"Detainment Bunds^{PS120} (DBs)" What's a DB?

John Paterson

Southland / Otago:

- Raised Southland 240 ha sheep farm, eeling and fishing the Waikaka, Mataura, Pomahaka rivers and walking in the Blue and Hokonui Mountains
- BSc. (Geology) Otago University; palaeontology, sedimentology, geomorphology

Bay of Plenty:

Small Farm – Kaharoa near Rotorua (Deer & Sheep - Wiltshire X Beltex)

Current Work:

- PMPInc Project Manager
- PMP partnership with Massey University Catchment Solutions programme
- Consultancy GIS LiDAR Scoping DB sites

Phosphorus Mitigation Project Inc. (2016)

A farmer governance group leading innovative applied research on interception of storm water run-off with **Detainment Bunds**PS120

PMP Inc. has co-ordinated a collaboration of Government, Science institutions, Ag-Industries and Councils

Research results on DBs to date have transformational implications for improved rural water quality and peak flow management

The key drivers of water quality

- Nitrogen

lost via leaching

Detainment Bunds^{PS120} *proven effective for Water Quality outcomes*

- Mitigating contaminants in stormwater runoff from pasture
- 55% to 65% * reduction (Clarke MSc 2013, Levine PhD 2020)
- Other multiple benefits

A Detainment Bund^{PS120} (DB) at Rerewhakaaitu – superscript denotes a storage requirement of ≥ 120m³ for each hectare of catchment

Temporary capture and holding of storm water runoff

Building DBs is a permitted activity

The target is sediment, phosphorus and E.coli

The scientific evidence of benefits is growing

DBs occupy productive farm pasture

Pasture not taken out of production (max 3 day ponding)

DB Design

Example – DB 2.5m high to spillway (can be less if site is very flat and catchment is small) Refer Pg. 56 PMP DB Manual Primary spillway pipe sized according to catchment size – Refer Pg. 33 – pipe size look-up table – PMP DB Manual Note: Compacted key

Detainment Bunds^{PS120}

Phosphorus Mitigation Project Inc. john.patersonPMP@gmail.com

Detainment Bunds^{PS120}

Significant infiltration with well-drained soils occurs over the 1 to 3 day ponding period

Detainment Bunds^{PS120}

If any pond water remains after 3 days it is released

The 3 day maximum ponding period assures pasture health

Released discharge post storm will likely infiltrate soil

Phosphorus Mitigation Project Inc. john.patersonPMP@gmail.com

After an appropriate drying period the former ponding area is again available for grazing

Prioritising environmental mitigation actions

Primary – 'most effective / best' things to do

1 Good Management Practices (GMP's)

minimise contaminant release and mobilisation in first instance

Secondary – 'next best' things to do

2 Interception and mitigation of mobilised contaminants

"edge of field"

Sedimentation' a natural process – needs Stillness: / time

- 'Stokes law' relates load bearing of water to its velocity
- Zero velocity needed to maximise settling out of fine particles
- Most 'sediment traps' fail to achieve full potential
- Inadequate storage = inadequate 'stillness'
 Time:
- What 'residency time' is needed? **3** days on pasture
- Adequate storage volume? to enable stillness

The 120:1 - ratio new science validated metric

- 120:1 minimum standard to qualify as a DB
- A threshold for adequate storage relative to catchment size
- Detainment Bund^{PS120} (DB)
- ≥ 120m³ storm water run-off storage per hectare of catchment
- Accurately measure proposed DB pond volumes
- Accurately measure catchment sizes
- (cups demo)
- Endorsed by AgResearch (C. Smith 2023 NZ Journal of Agricultural Research)

Where can we fit DBs into our catchments ?

- GIS based mapping with LiDAR data enables 1m contour mapping
- Likely sites occur along storm water flow paths
- In GIS draw a 'mock-up' DB wall (say 2.5m high)
- Draw the ponding extent and estimated ponding area (m²)
- Calculate potential storage volume (m³) and catchment size (ha)
- Does the DB 'mock up' site achieve $\geq 120m^3$ per ha ?
- A trial and error process generally 2 of 3 fail to achieve ≥120:1
- How to? See pages 19 21 of PMP's DB Guideline
- Automation of this process is progressing (Fernando Avendano)

DB Placement – example of GIS based DB 'mock up'

Hauraki sub-catchment (1200 ha) example – 70% DB applicability

Developing site optimisation tool - ArcPro 'DB arpx GIS package' - Requires high resolution LiDAR enabling 1m contour for DB 'mock ups'

Potential DB treatment - Hauraki sub-catchment of Lake Rotorua

- Applicability rate \approx 70% of the whole sub-catchment area.
- 38 potential DBs found by GIS scoping process
- DBs catching ≈ 60% of phosphorus and sediment load

Calculation of benefit:

DB applicability rate X DB % effect = Water quality outcome Hauraki example (70% DB applicability):

0.7 X 60% \approx 42% reduction (P & sediment)

120:1 serves water quality goals What storage ratio would mitigate flooding? Can DBs also modify flooding events? 120:1 Vs 252:1 PMP Inc. USA EPA 120:1 works for NZ water quality outcomes Moderates most annual storm runoff events

252:1 is a USA EPA standard for Sediment Basins

 $252m^3$ of ponding accounts for 1/3 of a net 75mm runoff event

MANAWATŪ RIVER CATCHMENTS COLLECTIVE

Mission:

West Mangoane 3,000 ha – 3 Blocks: North-East, West and South [with permission MRCC – F. Burke]

One example snap shot - The 'A' flowpath with 1mDEM downloaded

'A' flow path – a section of the headwater catchment

'A' flow path – 1mDEM layer

'A' flow path – <mark>'mock up' DB walls drawn</mark> and labelled – A1a, A1b, A1c

'A' flow path – Ponding areas (m²)

'A' flow path – Extent of catcments (A1a - 3 ha, A1b - 20 ha, A1c - 7 ha)

Example – 3 DBs in series - Accumulated benefit

	ID	Height m	ponding m ²	DB Volume m³	DB Catchment ha	Ratio	Туре
	A1a	1.8	614	368	3	123:1	existing dam
	A1b	1.8	1952	1,171	20	59:1	existing dam (failed)
	A1c	1.8	2227	1,336	7	191:1	existing dam
'In-series' accumulated benefit: 2,876 20 144:1							

m³ / ha

ha

*m*³

27

	Type of DB opportunity:	Nos.	% by No.
1	On-farm - New DB structures	38	24.7%
2	On-farm - Existing Dam retrofits	112	43.2%
3	Off-farm - DBs using public road embankments	8	4.9%
4	Off-farm - DB using railway line embankments	4	2.5%
	Total DB Nos.	162	100.0%

Cumulative effect of whole catchment DB application

KZe 👘	2.0		2843						2,369	/4	32	:1	147	28	new
K2fa	1.5		522						261	2	131	:1	148		existing pond
K2fb	1.2		1335						534	5	107	:1	149		existing pond
K2fc	2.5		1255						1,046	15	70	:1	150		new
K2f	2.5		1785						1,488	27	55	:1	151		new
K2ga	1.8		2179						1,307	7	187	:1	152		existing pond
K2g	3.5		24,090					2	28,105	526	53	:1	153	31	new
ID	Height (m)	DB-ID	ponding m2	ID			subcatchment m2	2 m ³		Subcatchment ha	Ratio				
L1a	2.5		2681						2,234	12	186	:1			new
M1a	2.5		2280						1,900	9	211	:1			new
M1b	2.5		1924						1,603	22	73	:1		34	new
M1c	2.5		6177						5,148	59	87	:1	157		existing - repair failed dam
													_		
M2a	2.1		761							6	0		_		
M2c	2.1		831						582	4	145	:1			existing pond
M2d	2.5		2091						1,743	18	97	:1			new
M2-	0.0		407							2			-		
ман	0.5		407						2 705	2	110	-1	100		
M36	2.0		3240						2,703	23	100	-1	100		new
Mac	2.0		3633						3,073	30	105	.1	4		new
M/a	2.5		3480						2 900	17	171	-1	162	38	Dew
1144	2.0		0400						2,000	17	1/1		All	Nev	N N
DRee	ana aitu far al	Lunner	Neet Mand	anona antahu	nonto (hoth o	n forme or	d public infractruct		0.001	0 101	207	.4	·		
DBSC	apacity for a	u upper	westmang	Jaene catchi	nents (both o	n tarms ai	id public infrastructi	ure) 703	9,901	3,131	221	.1	_		
						Pu	blic road areas not othe	rwise treated		420					
						Rai	lway embankment area	s not otherwise t	reated	299					
D	Bs capacity	with Pu	blic road a	nd Railway	DB embankr	ment site	opportunities dedu	cted	447	,586 2,412	186	:1			
									m	a ha	Ratio				

Use of existing off-farm embankments on rail Height (m) DB-ID ponding m2 ID Subcatchment ha subcatchment m2 m Ratio ID A1q 3.5 88001 102,668 2,121 48 :1 11655 m2 A1q G2 G2k 2121ha 433ha 88001m2 3297ha 4219 m G1 61t 1ha 148ha 2052 m2 Git l1g 268ha 21905 m2

8 on roads, 4

Conclusions for West Mangoane

Existing old dams - excellent opportunity for retrofitting to DBs

Applicability rate across the whole 3,000 ha area is high

The minimum storage ratio for water quality ($\geq 120:1$ over) is achievable

With a whole community buy-in (including NZ Transport Agency and NZ railways) and some modest increase in on-farm DB storage 252:1 is not an unrealistic target

 $252m^3$ of stormwater ponding accounts for:

- 1/3 of a net 75mm runoff event
- 1/4 of a net 100mm runoff event

DB rollout to entire farmed catchments ?

- Want to learn the skills for this rolling out DBs?
- Massey University (& PMP Inc. collaboration) 1st 'Master Class' – August/September 2024
- Establish what proportion of your catchment could be treated with qualifying DBs? i.e. DBs achieving $\geq 120:1$
- DB performance is related to soil drainage properties
- PMP's results for DBs on clay soils due 2026

Questions?

John.patersonPMP@gmail.com 027 249 6114

Reference: 'DB Manual'

https://atlas.boprc.govt.nz/api/v1/edms/document/A3539038/content

A DB safely intercepting storm water run-off where it first starts to flow, on a farm We need thousands of these built over the next 10 years

Phosphorus Mitigation Project Inc. john.patersonPMP@gmail.com

Paleohydrology – NZ's lost forests

Forests:

- 75% NZ's original forest cover destroyed over last 1,000 years
- Canopy an enormous sponge. Interception 10 40% (av. 25%)
- Enhanced evaporation from canopy and litter
- Enhanced evapotranspiration water moved from ground through the tree and leaves evaporating back into the air.
- Soil infiltration in forest can be 3x greater than pasture

Forests to Pasture effects:

At least 25% increase to the runoff volume and peak flow effects

- Faster storm water delivery more 'peaked' hydrograph
- Greater flash flood effects higher flood water levels
- More erosive flows and increased sedimentation
- Plus

Paleohydrology - Returning farm waterways to pristine status Is it possible ?

	Issue (cause)	DB Benefits	DBs result in	Validated by				
1	Water quality (phosphorus)	Phosphorus (P), in farm run- off captured in DBs.	Proven ¹ 47% to 68% reduction of P load in storm water run-off	¹ Completed research (Levine PhD 2020 and Clarke MSc 2013).				
2	Water quality (sediment)	Sediment captured in DBs.	Proven ² 51% to 59% reduction of sediment in storm water run-off	² Completed research (Levine PhD 2020 and Clarke MSc 2013).				
3	Human health (E. coli) ³	Possible pathogens capture, reducing risk to potable water and downstream "Swimmability".	³ Validation trials 2020 –2022. Likely similar to TP and SS results i.e. >50% reduction. Result pending.	Known association of Escherichia coli (<i>E.coli</i>) with sediment in run-off. ³ Pending applied research project.				
4	Erosion (sediment)	Moderation of erosive peak flows by DBs.	Limiting downstream erosion (banks, head wall gullying).	100+ historic Detainment Dams (DDs) built 1980 – 2000 in BOP.				
5	Flood (safety)	Moderation of peak flows by DBs during floods.	Limiting injury and loss of life from flooding induced road accidents.	Some DB works funded for peak flow risk reduction to public roads.				
6	Flood (destruction)	Less downstream infrastructure maintenance cost.	Limiting damage to housing, bridges, culverts, roads, pasture and water supply.	As above. Works funded for this reason.				
7	Aquifer Depletion (ground water)	'Aquifer recharge' through run-off residency in DB ponding area.	Proven ⁴ 43% to 63% infiltration through up to 72 hour DB ponding residency time.	⁴ Completed research (Levine PhD 2020 and Clarke MSc 2013).				

The Pristine hydrology goal – possible?

- possible?
 27% reduction rainstorm effects (achieved by 45% DB application rate)
- Will this return pristine state ≈ predevelopment hydrology ?

Development = Pasture and regular soil exposure

