

Good wildlife ditch. © The Drainage Channel Biodiversity Manual: Integrating Wildlife and Flood Risk Management (2008) Association of Drainage Authorities and Natural England

Enhancing Drainage Ditches for Water Quality and Biodiversity

Ditches are unique engineered ecosystems with characteristics of streams and wetlands.

CAREX lessons learned – the 'what'

- 1. Identify issues
- 2. Starting at the top
- 3. Fix leaky plumbing
- 4. Move downstream
- 5. Use a tool-box approach
- 6. Multiple tools for multiple problems

End of Tile Wetland

Advantages	Disadvantages
Low cost	Not suitable for high strength
	effluents
Easily implemented, can be	
constructed by landowner	
Easy and cheap to maintain	
Small land requirement	
Can be constructed quickly	
Can enhance biodiversity values	

End of Tile Drain

Nathan's Ditch Classification

Dry Ditch

• Dry except during and after rainfall events

Wet Ditch

- Stays wet year round
- Ground water table above the bottom of drain
- Very little water movement except during rain events

Stream Captured

- Drainage ditch captures stream has flowing water
- Can include perennial and ephemeral streams

Drainage Ditch Water Quality Practices

Treatment	Dry Ditch	Wet Ditch	Stream Captured
Vegetated Ditches	Х	Х	
Grassed Waterways	Х		
Re-Sloping Sides	Х	Х	Х
Low Grade Weirs	Х	Х	Х
In-Ditch Wetlands	Х	Х	Х

Grassed Waterways

Low Grade Weirs

Rock Weirs

Costs

The 41 weirs installed in Windermere & Taylors

Drains required approximately 2 cubic metres of boulders each. In 2015 cost of boulder purchase and digger time per weir was around \$125.

"Rock Weirs: A Practical Option to Improve Instream Habitat" – Environment Canterbury, Fish & Game, & Ashburton District Council

Sediment trap design

Suggested trap Length x Depth		Average width (m)		
		<1.5	1.5-3.0	3.0-4.5
Water velocity (ms ⁻¹)	<0.2	4.0 x 0.5	7.0 x 0.75	9.0 x 1.0
	0.2-0.4	7.0 x 0.5	10.0 x 0.75	12.0 x 1.0
	0.4-0.6	10.0 x 0.5	13.0 x 0.75	15.0 x 1.00

In-Ditch Wetlands

Advantages	Disadvantages
Low cost	Not suitable for high strength effluents
Easily implemented, can be constructed by landowner	Require regional council consent in drain management schemes
Easy and cheap to maintain	
Small land requirement	
Can be constructed quickly	
Can enhance biodiversity values	

In-Ditch Wetlands

Wai Kōkopu Consulting

Rebecca S Eivers

Carex secta along the water's edge stop nuisance weeds from establishing. No drain maintenance has been required 3+ years since planting.

Case Studies

Napier

Waikato – Dairy Farm

Emergency Overflow

Increased drain width with deep center

Wide drain channel with minimal slope and part of the wetland

Wetland basin

Dry Stock Farm – Central Hawke's Bay

Same alter of Manife & Manife Back Thereter series

A DECEMBER OF A DESCRIPTION OF A DESCRIP

Dairy Farm – Central Hawke's Bay

Drain widened, re-battered, and a shallow water shelf for planting aquatic plants

Grade Control Stuctures Wetland Basins

Drain #3

Hawthorn hedge (bank collapse, erosion), aquatic weeds, regular drain clearance

Riparian planting with local, eco-sourced native plants

Widened riparian on one side – planting on North side

Potential Wetland Sites

Potential Sites

- Re-Battering
- Two –Stage Ditch Design

Potential Sites

- Two-Stage Ditch Design
- In-Ditch Wetland

